MIPP- (FNAL-E907) Main Injector Particle Production Experiment Status and plans

Rajendran Raja
Report to the Fermilab PAC
28-March-2003

- Description of Experiment and goals
- Status and Schedule
 - » Hardware systems
 - » Software systems
 - » Beam
- Status of finances in FY03

Brief Description of Experiment

- Approved November 2001
- Situated in Meson Center 7
- Uses 120GeV Main Injector Primary protons to produce secondary beams of π[±] K [±] p [±] from 5 GeV/c to 100 GeV/c to measure particle production cross sections of various nuclei including hydrogen.
- Using a TPC we measure momenta of ~all charged particles produced in the interaction and identify the charged particles in the final state using a combination of dE/dx, ToF, threshold Cherenkov and RICH technologies.
- Open Geometry- Lower systematics. TPC gives high statistics. Existing data poor quality.

Physics Interest

- Particle Physics-To acquire unbiased high statistics data with complete particle id coverage for hadron interactions.
 - » Study non-perturbative QCD hadron dynamics, scaling laws of particle production
 - » Investigate light meson spectroscopy

Nuclear Physics

- » Investigate strangeness production in nuclei- RHIC connection
- » Nuclear scaling
- » Propagation of flavor through nuclei

Service Measurements

- » Atmospheric neutrinos Cross sections of protons and pions on Nitrogen from 5 GeV- 120 GeV
- » Improve shower models in MARS, Geant4
- » Make measurements of production of pions for neutrino factory/muon collider targets
- » Proton Radiography– Stockpile Stewardship-National Security
- » MINOS target measurements pion production measurements to control the near/far systematics
- HARP at CERN went from 2-15GeV/c incoming pion and proton beam momenta. MIPP will go from 5-100 GeV/c for 6 beam species π[±] K [±] p [±]

E907collaboration list

Y. Fisyak

Brookhaven National Laboratory

R. Winston

EFI, University of Chicago

R.J.Peterson

University of Colorado, Boulder,

E.Swallow

Elmhurst College and EFI

W.Baker, D.Carey, J.Hylen, C.Johnstone, M.Kostin, H.Meyer, N.Mokhov, A.Para, R.Raja, S. Striganov

Fermi National Accelerator Laboratory

G. Feldman, A.Lebedev, S.Seun

Harvard University

P.Hanlet, N.Solomey, C.White

Illinois Institute of Technology

M. Messier

Indiana University

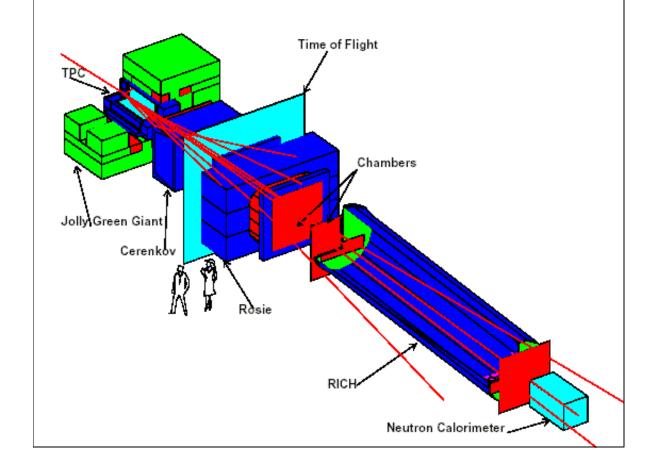
D.Asner,P.D.Barnes Jr., J.Burward-Hoy, J.Gronberg,E.Hartouni,M.Heffner,S.Johnson, D.Lange,R.Soltz, D.Wright

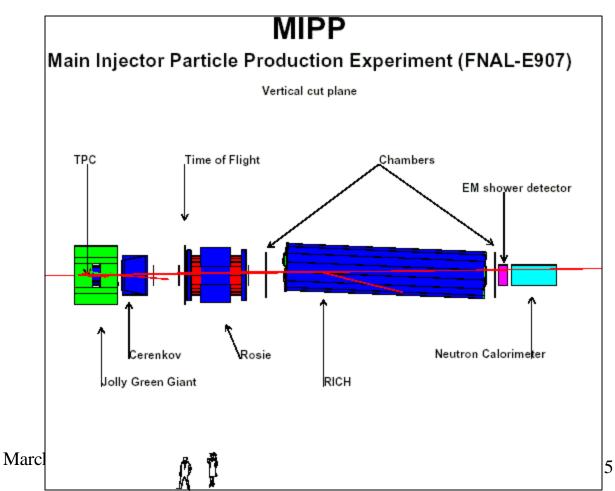
Lawrence Livermore Laboratory

H.R.Gustafson, M.Longo, D.Rajaram, H-K.Park

University of Michigan

A.Bujak, L.Gutay, D.E.Miller


Purdue University

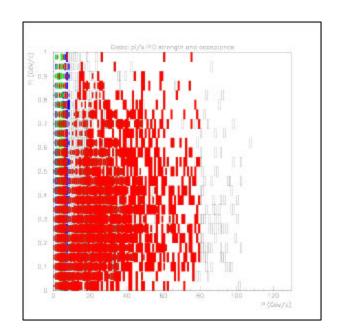

T.Bergfeld, A.Godley, S.R. Mishra, C. Rosenfeld

University of South Carolina

C.Dukes, L.C.Lu, K.Nelson, G.Niculescu

University of Virginia

MIPP Particle ID capabilities


K/Proton separation analysis using all systems.

- Red = 3σ or better.
- $3\sigma < Green < 2\sigma$
- $2\sigma < Blue < 1\sigma$

 0σ < White < 1σ

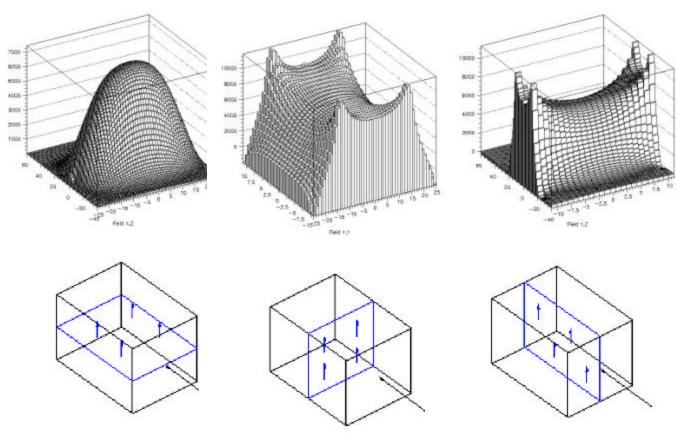
K/P separation

π/K separation

Situation at PAC approval (Nov 2001)

- We had cleaned up the previous experiment in MC7 Hyper-CP.
- We had designed and constructed iron struts to support the weight of the magnets Jolly Green Giant and Rosie and installed it in M-Bottom.
- We had installed a 1' high concrete platform in MC7 to support the magnets.
- We had fixed the Jolly Green Giant coil

Status of MIPP Now-Collision Hall


8

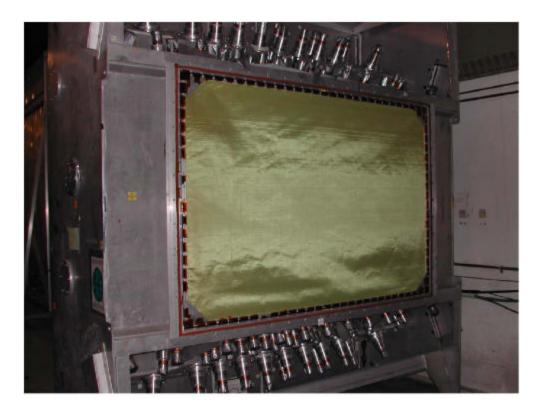
Status of MIPP Now-Collision Hall

Ziptrack of magnets complete

- We resurrected the Ziptrack system
 - » Software recovered by sending out crashed disk to Calfornia.
 - » Missing Hall probe cart re-made. Measured B_x, B_y, B_z in a 2" cube grid of points for both JGG and ROSIE over full aperture.
 - » Ziptrack now available for CKM and BTeV.

JGG B, component in projections y=0, z=0 and x=0

March 28, 2003


Installation schedule

- MIPP running time June 2003- Summer Shutdown 2005 (~ two years) (Jeff Appel)
- Experiment hopes to be ready by June 2003

	Fermilab	E907 MIPP		
	Install	ation Schedule		
WBS	Task Name	Duration	Start	Finish
5.2.4	Beam Cerenkov	37 days	4/7/03	5/27/03
5.5	Cerenkov	52 days	3/27/03	6/6/03
5.7.1	Target Wheel	35 days	4/7/03	5/23/03
5.8.5	TPC Installation	33 days	4/7/03	5/21/03
5.1	Time of Flight	99 days	4/14/03	8/28/03
5.11	RICH	54 days	3/20/03	6/3/03
5.12	Drift Chambers	65 days	3/20/03	6/18/03
5.13	Hadron Calorimeter	52 days	4/7/03	6/17/03
5.16	EM Calorimeter	67 days	3/20/03	6/20/03
5.15	DAQ	30 days	5/5/03	6/13/03

 See above chart in detail at http://ppd.fnal.gov/experiments/e907/Project/E907_v2.05 _Install.det.pdf

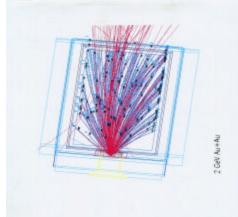
MIPP Cherenkov

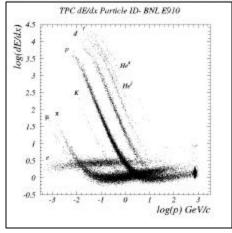
• Status-Install and align mirrors 3/27 - 3/28/03

• PMT testing 4/25 - 5/2/03

• Cabling 5/26 - 5/27/03

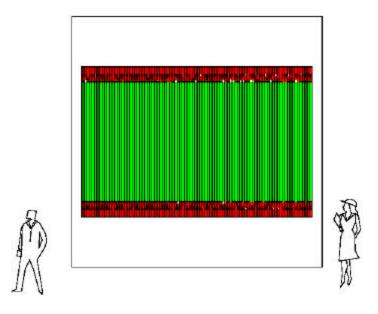
• Gas (C4F10) 6/2 -- 6/6/03


• Currently box is in MC7 in its position.


TPC installation

• TPC in clean room in MC7.

5.9.5	TPC Installation 33 days 4/7/03 5/21/03
5.9.5.1	TPC Repair BNC 2 days 4/7/03 4/8/03
5.9.5.2	TPC Place on Cart 1 day 4/9/03 4/9/03
5.9.5.3	TPC DC Rack Installation 3 days 5/5/03 5/7/03
5.9.5.4	TPC Gas Rack Refurbishment 5 days 4/7/03 4/11/03
5.9.5.5	TPC Gas Rack Installation 3 days 5/8/03 5/12/03
5.9.5.6	TPC Mixing Rack Installation 7 days 5/13/03 5/21/03
5.9.5.7	TPC Cable Installation 3 days 5/8/03 5/12/03


Time of Flight

• Time of flight (\$220K) being financed by a loan from University of South Carolina with a promise from Livermore to pay it back in the next few years.

5.10 Time-of-Flight (TOF)	99 days	4/14/03 8/28/03
5.10.1 TOF Module Frame Desi	gn 10 days	4/14/03 4/25/03
5.10.2 TOF Module Fabrication	4 mons	4/28/03 8/15/03
5.10.3 TOF Module Installation	n 5 days	8/18/03 8/22/03

Somewhat delayed due to difficulties in getting financing. 5cmx 5cm square scintillator bars in Rosie aperture, 10cmx10cm outside. ~ 150ps resolution.

MIPP- Time of flight system

Ring Imaging Cherenkov

- Selex RICH-We acquired all phototubes from the Russians- total of ~ 3000 phototubes
- Completely redesigned the front end electronics— 5 VME boards and ~100 (32 channel) readout boards. VME boards complete.
- 25 (32 channel boards) were delivered to Harvard for testing this week. They look OK. Remaining boards expected soon.

RICH Schedule

5.11 Ring Imaging Cherenkov (RICH) 54 days 3/20/03 6/3/03

- 5.11.6 RICH Install Support Equipment 10 days 5/19/03 5/30/03
- 5.11.7 RICH Gas Clean and Fill 2 days 6/2/03 6/3/03
- 5.11.10 RICH Front End Electronics Fab ~31.5 days 3/20/03 5/2/03
- 5.11.11 RICH Electronics Installation 2 days 5/2/03 5/6/03

Calorimeters

Hadron Calorimeter schedule

5.13 Hadron Calorimeter (HCAL) 52 days 4/7/03 6/17/03

5.13.2 HCAL Refurbishment 15 days 4/7/03 4/25/03

5.13.3 HCAL Installation 3 days 6/11/03 6/13/03

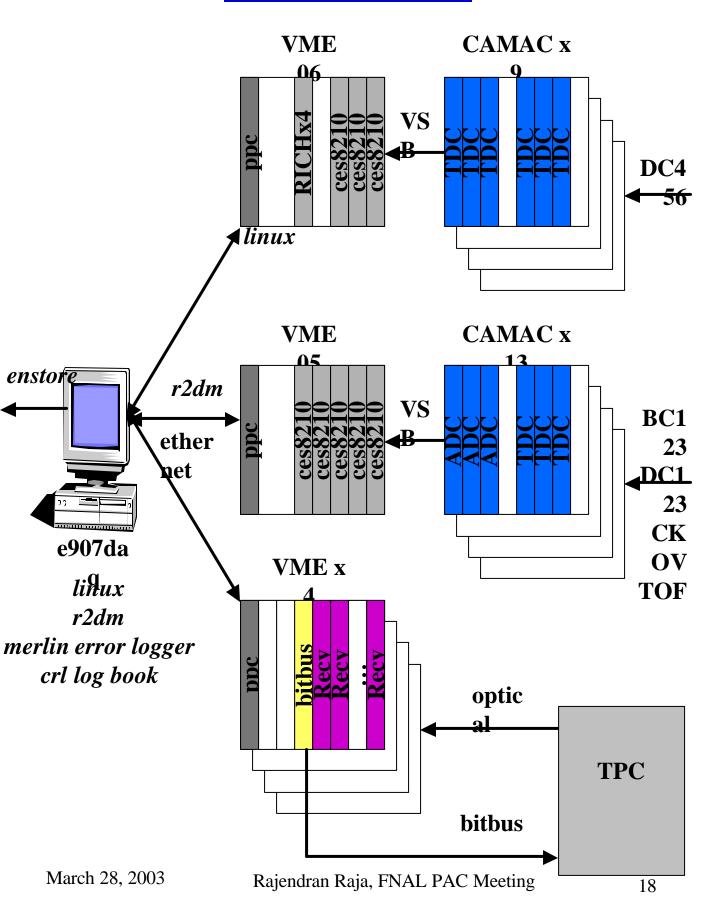
5.13.4 HCAL Gas Distribution 3 days 6/13/03 6/17/03

EM calorimeter schedule

We are building a lead sheet- gas tube EM calorimeter.

5.16 Electromagnetic Calorimeter 67 days 3/20/03 6/20/03

5.16.2 ECAL Fabrication 20 days 3/20/03 4/16/03


5.16.3 ECAL Installation 5 days 6/16/03 6/20/03

Wire Chambers

 Refurbishing E690 drift chambers as well as U-Iowa large PWC's from last used by University of Iowa in Selex.

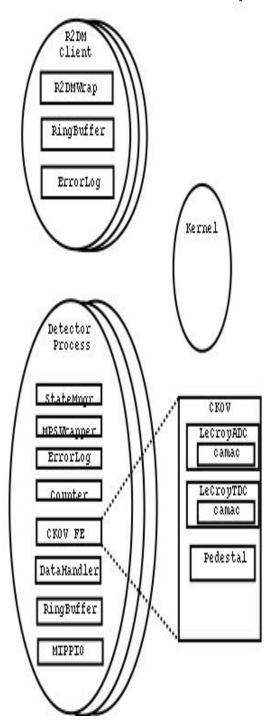
5.12 Drift Chambers (DC) 65 days 3/20/03 6/18/03 5.12.5 DC Testing 62 days 3/20/03 6/13/03 5.12.5.1 DC Test Stand Electronics Ch 7 days 3/20/03 3/28/03 5.12.5.2 DC Test Remaining Electronic 30 days 3/31/03 5/9/03 5.12.5.3 DC4 Testing 25 days 3/31/03 5/2/03 5.12.5.4 DC1 Testing 10 days 5/5/03 5/16/03 5.12.5.5 DC2 Testing 10 days 5/19/03 5/30/03 5.12.5.6 DC3 Testing 10 days 6/2/03 6/13/03 5.12.4 DC Installation 33 days 5/5/03 6/18/03 5.12.4.1 DC4 Installation 5 days 5/5/03 5/9/03 5.12.4.2 DC1 Installation 3 days 5/19/03 5/21/03 5.12.4.3 DC2 Installation 3 days 6/2/03 6/4/03 5.12.4.4 DC3 Installation 3 days 6/16/03 6/18/03 5.12.4.5 DC5 Installation 5 days 5/12/03 5/16/03 5.12.4.6 DC6 Installation 5 days 6/4/03 6/10/03 5.12.6 DC Gas Systems 44 days 4/14/03 6/12/03 5.12.6.1 DC Gas Mixing Systems 14 days 4/14/03 5/1/03 5.12.6.2 DC Gas Distribution 30 days 5/2/03 6/12/03

MIPP DAQ Hardware

<u> MIPP DAQ Software</u>

Fully modular

- » C/C++
- » Linux on ppc
- » Sample Detector Class


FNAL ODE Tools

- » Java Run Control (Bruce Greenway)
- » E907R2DM (Luciano Piccoli)
- » Elvin message passer (Luciano Piccoli)
- » CES8210 libs (Dave Slimmer)

Recent Progress

- » New linux kernel (2.2.12) & filesystem
- » Interrupt scheme implemented
- » CKOV class (base camac class)
- » Run Control near completion
- » All elements implemented in LLNL test stand

PPC Processes and Class Diagram

MIPP DAQ Schedule

- LLNL test stand work ~6 weeks
 - » Camac
 - Full run control
 - Add hardware interrupts
 - Database communication
 - » TPC
 - Bitbus control class
 - Dsp readout/stick testing
 - Data processor
- Harvard test stand work ~4 weeks
 - Electronics test
 - Rich daq class
- ODE schedule
 - » Close out development
 - » Some Run Control development remains
 - » Entering supporting role for other packages

- Mipp Comission (April-June)
 - Add second linux box (from LLNL)
 - RedHat OS update
 - New detector classes : inherit Camac
 - Test multi-detector readout
 - Test connection to enstore
- Linux on ppc observations
 - No problems with our "linux" decision
 - All ppc's have been ordered, will arrive soon

5.15 DAQ Commissioning 30 days 5/5/03 6/13/03

5.15.3 DAQ Slow Controls 30 days 5/5/03 6/13/03

Monte Carlo

- Geant3.21 based data driven Geometry. Details can be found at http://ppd.fnal.gov/experiments/e907/MC/e907mc.htm
- Have used it to stud acceptances, resolutions and ToF design.
- Work to be done- Digitize wire chambers, Implement calorimeters and beam Cherenkovs.

Offline Software

Monte Carlo Geometry transported to ROOT.

Offline C++, ROOT IO. MIPP has benefited enormously from the ability to use the same geometrical data-base in Monte Carlo and Reconstruction. Result of discussions during ACAT2000 conference held at Fermilab.

MIPP Offline Software summary

C++/ROOT based

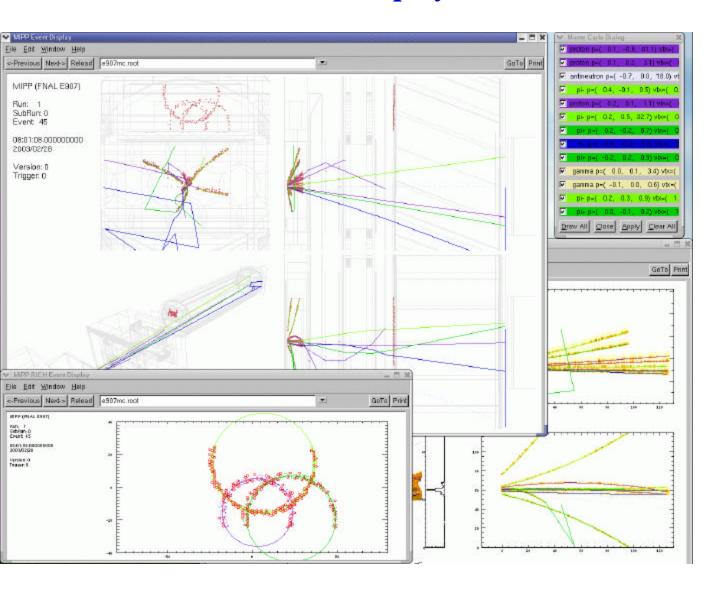
'ROOT' is CERNLIB/PAW replacement

- Provides "one stop shopping" for i/o, physics, geometry, graphics, histogram, analysis...
- Minimizes number of packages required
- Allows for rapid development

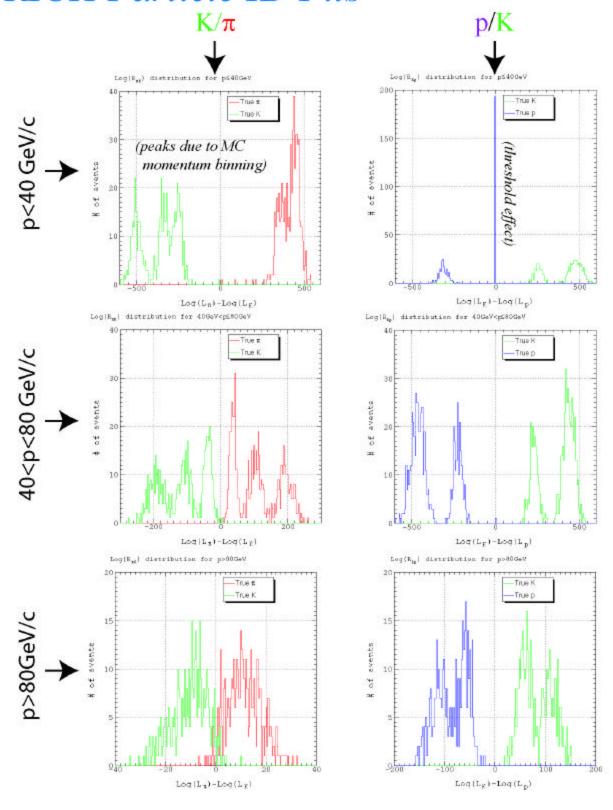
Basic Elements of MIPP Software are in place:

- Data format and Input/Output
- Database
- Geometry
- Monte Carlo "truth" access
- Event Display

Work underway to connect online and offline

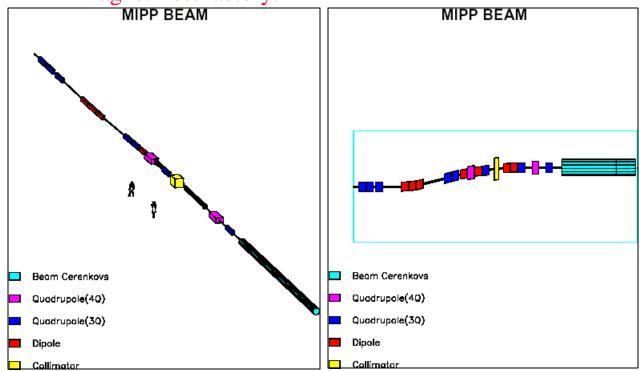

- Online data handling
- Online data monitoring

Work underway on reconstruction software


Detector	Simulation	Reconstruction Status
TPC	Done	Track finding, Track fitting (requires Bfield), dEdx
DC's	in progress	
CKOV	in progress	
TOF	in progress	
RICH	Done	Radii fits for $\pi/K/p$:~Done
NCAL/HCA	L in progress	

Expect to have online/offline connections ready by end of May Expect to have first pass at reconstruction by June

Event Display



RICH Particle ID Fits

MIPP Secondary Beam

- MC7 Hyper CP beam line removed. Target pile cleaned up.
- Beamline group of MIPP collaborators and Switchyard 120 personnel. Have examined 4 beam designs (using TRANSPORT, MAD and MARS (calculates showering backgrounds). Have decided on a design. Have in hand refurbished EPB dipoles needed. The Quadrupoles needs have also been identified. They need to be tested at the Magnet Test factory.

MIPP secondary beamline

Primary Proton Budget

Table 5 Primary beam rates, secondary beam rates and event yields for a positive secondary beam

p GeV/c Pri	mary p/spill p H	lz KHz	π Hz	Total Hzp events	K eventsπ events to	otal events
5	9.66E+09 7	404 1583	116013	1250001000000	3403911000000	2340391
15	2.10E+09 16	968 4651	74886	965051000000	10000001000000	3000000
25	1.08E+09 28	457 4651	60948	940551000000	10000001000000	3000000
30	8.92E+08 36	365 4651	56926	979421000000	10000001000000	3000000
40	7.19E+08 59	890 4651	50114	1146551000000	10000001000000	3000000
50	5.76E+08 84	327 3854	36820	1250001000000	8285191000000	2828519
60	4.37E+08100	367 2601	22032	1250001000000	5592311000000	2559231
70	3.43E+08111	720 1575	11705	1250001000000	3385241000000	2338524
80	2.86E+08118	639 861	5500	1250001000000	1851841000000	2185184
90	2.67E+08122	354 422	2224	1250001000000	90714 645042	1735755
100	3.07E+08124	115 176	709	1250001000000	37818 205646	1243464
110	5.82E+08124	819 51	130	1250001000000	11007 37783	1048790

Table 6 Primary beam rates, secondary beam rates and event yields for a negaitive secondary beam

p GeV/c Pr	imary p/spillpl	bar HzK Hzπ Hz	otal events
5	1.49E+10	77471726115527 125000 1000000 4313911000000	2431391
15	3.78E+09	41924651 99287 108130 100000010000001000000	3000000
25	2.77E+09	26134651 82580 89843 100000010000001000000	3000000
30	2.73E+09	21924651 79822 86666 100000010000001000000	3000000
40	3.94E+09	20005683101496 109179 100000010000001000000	3000000
50	5.73E+09	15205626117855 125000 85862110000001000000	2858621
60	8.24E+09	9104449119641 125000 51405610000001000000	2514056
70	1.38E+10	4813241121278 125000 271690 8103161000000	2082006
80	2.80E+10	2152145122640 125000 121342 5363021000000	1657644
90	7.62E+10	741237123688 125000 41906 3093401000000	1351246
100	2.00E+11	9 327 72576 72913 5322 818391000000	1087161
110	2.00E+11	0 6 4867 4873 25 13941000000	1001420

MIPP secondary beamline

Primary Proton Budget

Table 1 Physics request and proton needs

Target	Physics	Data Points Prin	mary proton	Total number
		Av	erage Intensity/spill	of Primary Protons
Numi 1	MINOS	3.3	125000	2.06E+10
NUMI 2	MINOS	3.3	125000	2.06E+10
H2	Scaling	6	9.76E+09	2.93E+15
N2	Atmospheric v	4	9.76E+09	1.95E+15
Be	рА	2	9.76E+09	9.76E+14
Be	Survey	1	9.76E+09	4.88E+14
С	Survey	1	9.76E+09	4.88E+14
Cu	pA	2	9.76E+09	9.76E+14
Cu	Survey	1	9.76E+09	4.88E+14
Pb	pА	2	9.76E+09	9.76E+14
Pb	Survey	1	9.76E+09	4.88E+14
Total		26.6		9.76E+15

Total number of spills 1330000

Number of spills/minute

3

Total time for expt

308 days No Pi factor

Double slow spill will help considerably.

- Design shielding around Primary target and collimator.
- Install. It is possible to have this done by June 2003.
- Beamline Cherenkovs- All mirrors resurfaced.

5.2.4 BCKOV Fabrication 37 days 4/7/03 5/27/03

- 5.2.4.1 BCKOV Flange Fabrication 4 wks 4/7/03 5/2/03
- 5.2.4.2 BCKOV Install Support Blocks 5 days 5/5/03 5/9/03
- 5.2.4.3 BCKOV Install Heads 2 days 5/12/03 5/13/03
- 5.2.4.4 BCKOV Install Pipes 10 days 5/14/03 5/27/03
- 5.2.4.5 BCKOV Install Gas System 10 days 5/14/03 5/27/03
- 5.2.4.6 BCKOV Install Mirror Controls 2 days 5/14/03 5/15/03 Beamline chambers all functional.

March 28, 2003

Financial status

- In FY2002, we received ~\$530K from Livermore through an ICO. Fermilab charged overhead on it. PPD made up for the overhead by making available engineering effort for ~\$150K.
- This year, FY2003 we expected the same amount from Livermore. Unfortunately, \$165K from last year's budget did not get charged to Livermore by October 1, 2002, despite our repeated urging of both accounting departments that this should happen. So \$165K got charged to this year's ICO. Also, we are not being given a break for the overhead.
- We need help at this point to complete installation. Efforts are being made at both labs to ameliorate this situation. We also need to get the Liquid Hydrogen target work started. This has a long lead time. Liquid Hydrogen data is essential in understanding MIPP systematics, as well as for dynamical studies.
- Our failure will not contribute significantly to the success of other experiments, since the sums being talked about are small on the scale of the big experiments.

Conclusions

- MIPP is able to obtain QCD data of unprecedented accuracy and information that will benefit a number of causes.
- MIPP needs some "extra" support from Fermilab and Livermore to make sure that we do not squander the beam time window available to us.